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ABSTRACT 

Measurements of salinity, temperature, and velocity shear profile time series were 

calculated from collocated AOFB and ITP buoys deployed in the Beaufort Sea from 

2014–2015. Of interest was the effect ice speed has on MLD shear generation, 

Richardson number, and heat flux. The inertial components were also considered, as a 

large inertial event was present during the beginning of the data set. Data from the buoys 

show turbulent activity in the ocean during inertial wind events contributes to enhanced 

mixing in the mixed layer and entrainment of heat from the pycnocline. Data during non-

inertial events has a much weaker correlation. Results demonstrated that during inertial 

events, ice speed was moderately correlated with heat flux (r = .56, p < .001). Non-

inertial events saw a lower correlation of ice speed to heat flux (r = .312, p < .001). 

Relationships between ice speed and shear (r = .107, p < .001), ice speed and inverse 

Richardson number (r = .035, p = .256), inverse Richardson number and heat flux (r = 

.3, p < .001), heat content and heat flux (r = .084, p < .001) were also explored.  
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I. INTRODUCTION 

A. ARCTIC ENVIRONMENT 

The Arctic environment is of great interest to modern researchers in studying 

global climate change. The sensitivity to summer solar heating, along with limited human 

contact, offers a prime environment for research. However, there are no illusions about 

the grueling nature of the Arctic environment. Frigid temperatures and remoteness do not 

come easy on humans and equipment. Importantly, the under-ice ocean structure and 

mixed layer dynamics are substantially different than most lower latitude environments. 

Research in this field is ongoing, with much of it directed at improving coupled 

atmosphere–ice–ocean numerical models that are gaining predictive skill in this complex 

region. It is of hope that this research will contribute to that understanding. 

1. Air-Ice-Ocean Coupling 

The Arctic environment is different than lower latitude oceans because of the 

presence of the ice pack for most of the year and the strong density stratification that 

separates the mixed layer from the rest of the underlying ocean. This stratification is unique 

in that it effectively insulates the surface ice from warmer water that would otherwise 

create a rapid ice retreat in extent and thickness. The ice pack dampens momentum and 

energy transfer between the atmosphere and underlying ocean. Previous observations have 

shown that the Arctic internal wave field is one to two orders of magnitude less energetic 

than regions in the midlatitudes (Halle and Pinkel 2003; Levine et al. 1985). The low 

thermal conductivity of the Arctic ice pack also limits sensible heat fluxes between the 

atmosphere and ocean, while the high albedo and opacity of the ice cover limits 

transmission of summer-time solar radiation into the ocean. As ice velocity increases in 

response to wind speed, part of the atmospheric surface stress is transferred into internal ice 

stresses and deformation, particularly during winter months when the ice concentration is at 

its greatest (Smith and Grebmeier 1995; McPhee 2008). As the ice pack accelerates, 

movement of the ice relative to the ocean causes the formation of a sheared Ice-Ocean 

Boundary Layer (IOBL). With greater under-ice basal roughness, greater momentum 



 2

transfer and turbulence generation occur. However, the basal ice surface can often be 

nearly hydraulically smooth, particularly with new, first year ice, reducing momentum 

transfer into the underlying ocean for a given ice speed. During summer months, the ice 

thins, breaks apart, and begins to retreat. Figure 1 demonstrates this breakup of ice. 

  
Arctic ice covering during different parts of the year. Note the melt ponds occurring 
during the melt season, and the breakup of ice during the summer season. The breakup of 
ice can also occur near Marginal Ice Zones (MIZ), where open ocean meets the Arctic ice 
pack. 

Figure 1.  Aerial View of Arctic Seasons. Source: Tsamados et al. (n.d.). 

This opening of the ice allows more direct momentum transfer into the ocean 

from the atmosphere. Consequently, this process acts as a positive feedback mechanism 

whereby greater surface turbulence enhances ice breakup and mixing, further allowing 

wind events to penetrate to the ocean surface. 

2. Mixed Layer and Pycnocline Entrainment 

The region below the IOBL to the first vertical density gradient (or pycnocline) is 

called the mixed layer. Attributes of the mixed layer involve nearly uniform temperature 

and salinity profiles, largely driven by turbulent mixing and forced by motion of the ice 

relative to a mostly stationary ocean, and in freezing conditions, a buoyancy flux from 

dense brine being rejected from the forming ice. The ocean mixed layer can be 

considered an ice bath since it is always near the freezing temperature of seawater. In 

polar regions, the temperature and salinity range of seawater is such that density is 

controlled by salinity and not temperature. At temperatures close to freezing, the thermal 

expansion factor BT of seawater is greatly diminished compared to the haline contraction 
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factor, BS. Thus, the impact of BS is greater in the mixed layer and density becomes a 

product of the salinity with no attribution to temperature (Figure 2). 

 
Thermal expansion factor ratio increases over 400% from the seawater freezing 
temperature of -1.86C to 4C. Haline contraction factor ratio varies less than 2% 
throughout the temperature range and is otherwise not sensitive to temperature. Near 
freezing, the effect of BT is diminished. 

Figure 2.  Thermal Expansion and Haline Contraction. Source: McPhee (2008). 

In summer conditions in the Central Arctic the sun is up continuously, delivering 

substantial radiative fluxes to the ice and ocean surface. Solar radiation penetrates leads 

(gaps between ice floes). In late summer, the rate of upward heat flux from the ocean will 

begin to exceed the rate at which conduction can remove the heat to the atmosphere. 

Downward heat flux from the atmosphere also begins to melt the ice and snow surface 

when the ice temperature increases towards zero. An example of this is was observed 

during the Arctic summer of 2007, where Perovich et al. (2008) records a 2.1 m loss of ice 

thickness due to bottom melting, and a .6 m loss due to surface melting. Solar radiation also 

drives the formation of melt ponds, which changes the albedo from the 0.85 range of ice 

and snow to 0.15 range of water. Consequently, the large meltpond areas seen in late 

summer capture large amounts solar heat and act as a positive feedback mechanism in 

summertime melt (Gallaher et al. 2016). 

Ice melt results in freshwater discharge into the mixed layer, reducing its salinity 

and frequently creating a shallow pycnocline in light to moderate wind forcing conditions 

(McPhee 2008, Gallaher et al. 2016). Figures 3 and 4 demonstrate the effect of buoyancy 

flux. 
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Summer time scenario. Ice melt creates positive buoyancy flux, enhancing stability and 
often creating a seasonal pycnocline.  

Figure 3.  Summer time Arctic Vertical Density Profile. Source: McPhee (2008). 

During the extreme atmospheric cold of Arctic winters, open water rapidly 

freezes, reducing the open water fraction as the ice pack thickens. As seawater freezes 

into ice, brine rejection takes place, increasing the salinity of the mixed layer. 

 
Winter time scenario. Freezing creates a destabilization and negative buoyancy flux due 
to brine discharge.  

Figure 4.  Winter time Arctic Vertical Density Profile. Source: McPhee (2008). 
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Although counterintuitive, brine discharge actually weakens the pycnocline 

stratification, as changes in density with depth are reduced (Serreze and Barry 2005). The 

negative buoyancy flux associated with brine discharge enhances turbulence levels in the 

mixed layer and subsequently mixes down to the pycnocline. 

In either the summer or winter scenarios, the main pycnocline plays a critical role 

in insulating the ice from sub-pycnocline sensible heat (Aagaard et al. 1981). Pacific or 

Atlantic origin water resides beneath the pycnocline and contains heat capable of melting 

ice (Figure 5). Although warmer than the freezing temperatures of the mixed layer, the 

Pacific and Atlantic origin water are much saltier than the relatively fresh mixed layer, 

giving them greater density, which isolates the fluid from turbulent mixing. 

 
Generalized Arctic vertical cross-section from the Bering Strait to Fram Strait delineating 
spatial differences in the Arctic water and nomenclature. 

Figure 5.  Arctic Cross-Section from Bering Strait to Fram Strait. Source: Arctic 
Monitoring and Assessment Program (AMAP) (1998). 

Turbulence in the ocean mixed layer arising from the wind-driven ice motion is 

blocked or rapidly diminished through the strong stratification of the pycnocline. The 

result of turbulent eddies acting on the pycnocline are a sharpening of the density 

gradient at the base of the mixed layer, a deepening of the pycnocline, and entrainment of 

heat and salt from the pycnocline. Vertical shear from turbulent surface boundary layer 

begins to erode the pycnocline which reduces the salinity difference between the mixed 
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layer and the sub-pycnocline waters, but sharpens the gradient between them (Smith and 

Grebmeier 1995). Upward heat flux takes place with entrainment, however, the mixed 

layer remains near freezing due to latent heat of fusion from the melting ice. The net 

result of a strong pycnocline is an attempted decoupling of the mixed layer from the 

underlying sensible heat. In the absence of this strong stratification, surface-forced 

turbulent entrainment would be much greater than what is currently observed in the 

Arctic. 

3. Inertial Motion 

Near-Inertial internal waves have near zero vertical displacement and a horizontal 

path following a circular, anticyclonic orbit. Gill (1982) describes inertial motion as 

being synonymous with a Poincare wave oscillating at the Coriolis frequency. Since the 

restoring force of gravity is very weak, the wave takes a path that is similar to a particle 

moving in the absence of forces; hence the link to inertia (Pond and Pickard 1978).  

Inertial motion of the ice cover is frequently generated via strong, fast-moving 

wind events that essentially impose an impulse of momentum on the ice cover. Synoptic-

scale weather systems impart wind stress on the ice, which allows momentum transfer to 

the underlying mixed layer. The ice and mixed layer accelerate, and begin to turn anti-

cyclonically due to Coriolis (Figure 6). When the wind ceases, the inertial motion 

continues, creating a resonant and oscillatory response that can last several days past the 

actual wind event (D’Asaro et al. 1995; McPhee 2008; Gill 1982; Pond and Pickard 

1978). 



 7

 
Idealized inertial circle with radius B. u and v are component velocities and VH is overall 
velocity. Inertial motion displacement is almost entirely horizontal, making gravity as a 
restoring force extremely weak. As such, the Coriolis force acts as the restoring force. 

Figure 6.  Inertial Motion. Source: Pond and Pickard (1978). 

As the inertial motion of ice continues, it accelerates the ocean mixed layer, 

creating shear and turbulence in the mixed layer until most of the shear is concentrated 

across the density jump at the base of the mixed layer. This mixing and shear contributes 

to heat and salt entrainment (D’Asaro 1995). It is important to note that not all strong 

wind events will create strong inertial motion. As Halle and Pinkel (2003), and D’Asaro 

(1985) demonstrated, inertial events can be hampered by mesoscale eddies and sub-

inertial motion. These hindrances can act as a dampening mechanism on not only the 

strength of the inertial motion, but also on the depth of which the inertial motion 

penetrates. The spatial and temporal scale of the wind events strongly effect the strength 

of the inertial response. McPhee (2008) also notes that internal ice stress can dampen 

inertial motion through ridge formation. 

4. Declining Ice Thickness and Extent 

The decline in ice thickness and extent is not only a telling sign of Arctic 

warming, but also suggests a positive feedback mechanism. The decadal average for loss 

of sea ice extent was 3–4% from 1979–2012 with a 43% decrease in thickness (Wadhams 

2012; IPCC 2014). After 1996, the loss of sea ice extent increased to 10% per decade 

(Figure 7). Every successive decade in every season has seen a decrease in Arctic sea ice 

extent since 1979 (IPCC 2014). 
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Annual average of Northern Hemisphere sea ice extent (103 km2) from 1979 through 
2013. Solid black line represents linear regression. 

Figure 7.  Historical Sea-Ice Extent. Source: Simmonds (2015). 

Declining ice thickness and extent has widespread impacts. A decrease in in ice 

covering, particularly snow covered multi-year ice, reduces albedo. The increase in solar 

insolation reaching the water from lack of ice magnifies the warming of the Arctic. With 

Arctic warming, there is a decrease in multi-year ice relative to first-year ice. First year 

ice has a largely hydraulically smooth base, and it is thinner and does not insulate from 

downward heat flux during warmer atmospheric temperatures in the summer months. 

Thermal coupling between the atmospheric boundary layer and underlying seawater 

increases (Wadhams 2012; McPhee 2008; Randall et al. 1998). Although this is 

ameliorated via more rapid formation of first year ice and subsequently less turbulent 

exchange from under-ice roughness, first year ice does not typically survive annual or 

biennial summer seasons without significant snow covering (Maykut 1978). In general, 

with an overall increase in heat reaching the ice-ocean-boundary layer, the result is still 

increased ice melt. Larger open water area allows for greater wind fetch, which 

contributes to greater surface wave energy and subsequent ice breakup in the marginal ice 

zone. 

With the Arctic warming also comes greater risks from seawater steric expansion, 

increased export of fresh water to the Northern Atlantic, ocean conveyor belt inhibition, 

permafrost melting, ecological and economic damage, and stronger storms. Although the 
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warming is in the Arctic, it is coupled with the rest of the planet. Oceanic currents, 

atmospheric patterns, and particular flora and fauna are significantly impacted. 

B. BACKGROUND 

Toole et al. (2010) studied the influences of the thermohaline stratification in the 

central Canadian basin and its effects on basal melt rate of sea ice. In a large study 

utilizing over 6500 individual temperature and salinity profiles from the Woods Hole 

Oceanographic Institute between summer 2004 and summer 2009, Toole et al. (2010) 

created a 1-D ocean mixed layer model to calculate heat flux estimates in the Canadian 

Basin. The profiles were measured by 10 Ice Tethered Profilers, which entered the 

Canadian Basin during their lifespan. Results demonstrated an average summertime 

mixed layer depth of 16 m, with average wintertime mixed layer depth of 24 m. Toole et 

al. (2010) noted limitations of the ITP in measuring right up to the ice. These limitations 

occurred in later summertime with the presence of a seasonal pycnocline that was very 

near to the 9 m minimum sample depth of the ITP. These shallow density jumps in 

controlling turbulent mixing in the ocean mixed layer.  

Toole et al. (2010) compared these temperature and salinity profiles to 1975 

profiles taken during the Arctic Ice Dynamics Joint Experiment (AIDJEX). Results had 

shown that the winter mixed layer in 1975 had a weaker density stratification and greater 

depth. Summertime mixed layer salinity in 1975 had less contrast with the wintertime, 

and lacked a near surface temperature maximum due to solar insolation. The Canadian 

Basin had become warmer and fresher compared to 1975. The summertime 1-D model 

used had good agreement with the observations, and estimated that out of the 65 W m-2 of 

incoming shortwave radiation, 50 W m-2 went to bottom melt, with 15 W m-2 going to 

increasing ocean heat content. Toole et al. (2010) noted that the 15 W m-2 would appear 

as a temperature increase in the near surface temperature maximum. The wintertime 1-D 

model used a 15 W m-2 cooling rate, which averaged to a 70 cm ice growth over the study 

period. The 1-D model allowed the calculation of turbulent diapycnal diffusivity, which 

is the heat from turbulent mixing that is required to match the authors’ heat budget. The 

turbulent diapycnal diffusivity was estimated to be several orders of magnitude larger 
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than cited in previous literature. This led to the conclusion that pycnocline stratification is 

currently isolating the sea ice from deeper sensible heat in the Canadian Basin, primarily 

from Pacific Summer Water (PSW) that lies between 40—100 m depth. During the 1-D 

model runs, Toole et al. (2010) applied over 3 times the cooling rate and an order of 

magnitude larger mechanical work, still the PSW water failed to significantly entrain. 

They did find that near surface temperature maximums created during the summertime 

can be entrained into the mixed layer and contribute to delayed fall ice growth. An 

interesting negative feedback mechanism was that increased basal mixed layer 

stratification since 1975 would require increased turbulent energy to entrain sub-mixed 

layer sensible heat. However, decreased thickness of the mixed layer would also 

concentrate the turbulence, allowing for greater entrainment—hence the counteracting 

physical mechanisms.  

Toole et al. (2010) defined the mixed layer by finding the first instance in 

potential density that exceeded a reference potential density by .01 kg m-3. The reference 

potential density was the shallowest sampled potential density in each profile. 

Timmermans et al. (2012) used a similar method but also defined a layer beneath the 

mixing layer termed the surface layer, with a potential density difference of .25 kg m-3 

from the reference potential density. Timmermans et al. (2012) found that lateral 

processes from ageostrophic baroclinic instability can restratify the surface layer after a 

mixing event. This restratification can effectively block vertical shear and dynamical 

processes. Between the mixing layer (.01 kg m-3) and surface layer (.25 kg m-3), 

Timmermans et al. (2012) defined this gap as the insulating layer. The insulating layer, 

combined with the restratification of the mixed layer from baroclinic instability, shields 

the underlying basal surface layer from erosion and entrainment of heat and salt. This 

interesting aspect of restratification acts as a negative feedback mechanism to mixing and 

further isolates the warm PSW. 

Shaw and Stanton (2014) studied the upper ocean vertical temperature diffusivity 

in the western Arctic ocean using data sets collected from the one year duration 1997–

1998 Surface Heat Budget of the Arctic Experiment (SHEBA) manned ice camp. Data 

collected from a winch operated profiler with thermal microstructure package recorded 
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CTD data to a depth of 160 m. Of the 12,350 casts made, 9395 had adequate quality CTD 

and thermal microstructure data. The SHEBA ice camp and subsequently the profiling 

equipment drifted over multiple bathymetric features such as the Canada Basin, Chukchi 

Borderlands, and Mendeleev Abyssal Plain. Shaw and Stanton (2014) calculated vertical 

turbulent temperature diffusivities based upon the Osborn and Cox (1972) model in 

which the production and dissipation of turbulent potential temperature variance is 

assumed to be in statistical balance. Results varied spatially according to the underlying 

bathymetric features of the ice camp. For the Canada Basin, heat flux was an average of 

.1 W m-2 into the mixed layer. The Chukchi Borderlands saw an average heat flux of 2 W 

m-2 into the mixed layer and the Mendeleev Abyssal Plain saw a near zero vertical heat 

flux. Vertical diffusivity values away from irregular bathymetry were on the order of 10–
7 m2 s-1; meanwhile, vertical diffusivity values near ridges and plateaus were on the order 

of 10–6 m2 s-1. The underlying ridges and plateaus were largely in the Chukchi 

Borderlands, which consists of the Northwind Ridge, Southern Chukchi Plateau, and 

Northern Chukchi Plateau. Periods of intense surface forcing saw vertical diffusivity 

values on the order of 10–4 m2 s-1, although specific instances were not discussed.  

Shaw and Stanton (2014) concluded that halocline diffusivities near the Canada 

Basin are very near molecular diffusion levels Although vertical diffusivity is an order of 

magnitude larger near bathymetric features in the Chukchi Borderlands, the level is still 

quite small when compared to historical diffusivities near the Yermak Plateau and 

Lomonosov Ridge. The Chukchi Borderlands enhanced heat flux is correlated with an 

increase in the vertical strain variance. This provides a connection between inertial wave 

activity, turbulence, and bathymetric features. Shaw and Stanton (2014) note that even if 

vertical temperature diffusivities remain unchanged since SHEBA, the Chukchi 

Borderlands can still expect increased ice retreat if sensible heat is increased in the 

subsurface temperature maxima. Given future ice retreat, the vertical diffusivities may 

change with changes in turbulence and mixing. 

Shaw et al. (2009) studied data acquired from the SHEBA experiment again with 

an emphasis on heat budget and its effects on sea ice. Similar to results found in Shaw 

and Stanton (2014), when the ice camp north off of the Chukchi shelf, very little 
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entrainment took place. Although there was a lack of irregular bathymetry, there was also 

a lack of Pacific halocline water from which to entrain heat. Even with a saltier mixed 

layer and subsequently reduced stratification, a lack of Pacific origin water attributes to a 

cool halocline, thus the nearest sensible heat is beyond reach deep in the Atlantic 

halocline. Interestingly, during the summer heating day, particularly record days 575–640 

of 1998, incoming solar radiation provided an upward heat flux average of 16.3 W m-2. 

This dwarfed the flux due to upper pycnocline entrainment (.1–1.5 W m-2). Price et al. 

(1986) studied extensively the effects of solar insolation and mixed layer dynamics in the 

eastern Pacific Ocean. Although ice cover is not present, Price et al. (1986) found that 

solar insolation heats the surface layer and creates a near surface stratification. Higher 

wind velocities deepen and erode the stratification, increasing the overall temperature of 

the mixed layer. The difference in the Arctic is that solar insolation heat is immediately 

available for basal ice melt since it is primarily trapped in the IOBL. 

Levine et al. (1985) studied the internal wave energy levels of the Arctic and 

compared them to observations at lower latitudes. A single thermistor chain with 2 min 

sampling intervals and 10 m resolution was moored under the ice pack in the vicinity of 

the Yermak Plateau from 01–06 May 1981. Additionally, the researchers used a profiling 

current meter and CTD. Fourier transforms with ensemble averaging and non-

overlapping frequency bands were used to convert the timeseries data into spectra. The 

inertial frequency based on deployment latitude was .0825 cph, with a local buoyancy 

frequency (N) between 2—4 cph at MLD depths. Depths of individual isotherms were 

tracked in time, with the assumption made that vertical displacement is dominated by 

internal waves. Results demonstrated an internal wave energy spectrum that is less 

energetic by a factor of 101 to 102 (Levine et al. 1985; Pinkel 2008). Aagaard (1981) and 

Halle and Pinkel (2003) found similar results in reduced internal wave energy. Frequency 

dependence between the inertial and buoyancy frequency was to the power of -1.5 to -2; 

close but less than the Garrett and Munk (1972) spectral slope.  

Levine et al. (1985) argues that the lack of significant internal wave energy is due 

to ice cover dampening the internal wave field, and weakening wind-forced momentum 

transfer through the ice in comparison with the open ocean. Halle and Pinkel (2003) 
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study of inertial internal wave energy in the Beaufort Sea noted inertial events were not 

always correlated to ice motion. Indeed, beyond ice cover mentioned in Levine et al. 

(1985), internal waves near the inertial frequency could be dampened by mesoscale 

currents, leading to destructive interference of the inertial waves. This interaction also 

limits subsequent vertical shear, and thus heat and salt flux. They also note that during 

wind events, greater inertial internal wave energy was found during late winter compared 

to early winter. This contradiction is noted by the researchers, and is opposite to McPhee 

(2008) and Levine et al. (1985) findings. Halle and Pinkel (2003) conjecture is that as 

winter progresses, ice deformation through convergence and divergences creates ridges 

and leads due to internal stresses. This deformation appears to increase the generation of 

inertial waves.  

C. OBJECTIVES 

The purpose of this research was to contribute to the parameterization of 

geophysical features that are used in coupled ice-ocean-atmosphere numerical models. 

Many dynamical mechanisms in the Arctic are not well understood, and with a changing 

Arctic, these features are important to understand if Arctic numerical predictions are to be 

accurate. The incorporation of more research and in-situ observations will result in 

decreased model error and extend prediction capabilities. 

Of interest in this thesis was the effect of mixed layer dynamics on vertical heat 

flux. Hypothesis testing occurred between multiple variables, specifically: ice speed and 

heat flux, ice speed and shear, ice speed and inverse Richardson number, inverse 

Richardson number and heat flux, and heat content one meter below the MLD against 

heat flux. The null hypothesis is that no relationship exists between any two variables 

tested. Type I error less than .05 would reject the null hypothesis. 
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II. METHODS 

A. EQUIPMENT AND DATA SOURCES 

Unattended arctic environment instrumentation must be able to withstand frigid 

temperatures, lack of routine maintenance, and damage from either polar bears or ice 

ridging and melting. This presents a challenge when creating autonomous sensors that 

can run on batteries and transmit data via satellites. Often these unique challenges are 

overcome through custom building of equipment. This thesis used Ice-Tethered Profilers 

(ITP) developed by the Woods Hole Oceanographic Institute and an Autonomous Ocean 

Flux Buoy (AOFB) designed by Tim Stanton at the Naval Postgraduate School (NPS). 

1. Ice-Tethered Profilers 

The ITP is an automated, moderately priced, expendable, CTD profiling system 

designed to be deployed on perennial sea ice in the Arctic Ocean (Figure 8). It was 

developed to provide 1 m resolution temperature and salinity profiles down to a depth of 

750 m with a 3-year endurance life cycle (Krishfield et al. 2008). The ITP was built light 

enough to be transported on Twin Otter aircraft or helicopters and slim enough to be 

deployed through a 25 cm auger or ice-melt hole. 
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Figure 8.  ITP schematic. Source: Krishfield et al. (2008). 

The ITP consists of three components: a surface instrument package, an insulated 

wire-rope tether, and an underwater profiler. The surface instrument package is a 

cylindrical housing that sits on top of the ice with a foam shell surrounding the 

electronics. Within the electronics package is a GPS receiver, data controller, lithium 

batteries, Iridium 9522 L-band transceiver, and a low-power Persistor CF2 computer. 

Onboard flashcard memory can store all sensor and engineering data for the life of the 

system. Data is also passed via the Iridium modem to a dedicated computer at the Woods 

Hole Oceanographic Institute. The wire-rope tether is a .635 cm insulated steel wire with 

a 114 kg ballast weight fixed to the bottom. Length of the tethers are often built to reach 

750 m in depth, but can be built shorter to accommodate shallower bathymetry at 

deployment locations. The profiler is a cylindrical case housing batteries, tether-climbing 

drive system, CTD, and buoyancy controls. The CTD samples at 1 Hz usually while 

going down the tether. ITP profilers are ballasted to be neutrally buoyant near the middle 

of the tether depth (Krishfield et al. 2008). The ITP drive system that powers the 
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movement of the profiler uses approximately 1 W per profile, owing to approximately 1.5 

million meters of profiling, or 2.5–3-year lifespan when profiling twice per day. For this 

deployment, CTD profiles were sampled every 3 hours. Data is made publicly available 

at Woods Hole Oceanographic Institute’s website (www.whoi.edu).  

2. Autonomous Ocean Flux Buoys 

The AOFB is comprised of two main components: a surface buoy and an 

instrument package deployed at 4.5m depth (Figure 9). The surface buoy contains a two-

way Iridium transceiver, GPS, meteorological package, lithium batteries, solar recharging 

panels, and onboard processors and computers. Data is uploaded twice-daily to a 

dedicated computer at NPS (AOFB 2016). 

 

Figure 9.  Autonomous Ocean Flux Buoy (AOFB). Source: AOFB (2016). 
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The instrument package has several components. First is a 300 kHz Acoustic 

Doppler Current Profiler (ADCP) designed and built by Teledyne Instruments. The 

ADCP senses current velocity every 2 m in the vertical to a range of up to 80 m using 

broadband signal processing. This allows the vertical gradient of shear to be calculated 

through vertical differencing of the horizontal velocity components. The ADCP profiles 

were sampled every 30 minutes. Second, the AOFB contains a custom built flux package 

that consists of a 3D current meter, conductivity cell, and fast response thermistor (AOFB 

2016). The acoustic travel-time velocity sensor has a noise floor of 0.2 mm/s, and the 

temperature sensor resolves 30 microkelvin temperature fluctuations. These sensors allow 

for the calculation of heat, salt, and momentum flux through the use of eddy correlation 

methods. The flux package was run for 40 minutes every 2 hours to robustly estimate the 

vertical turbulent fluxes. Ice velocity was derived from 10 minute sampled GPS positions 

of the AOFB surface buoy. The AOFB is dynamic and constantly being updated. Latest 

buoy designs include a downward hanging MLD spar unit with FP07 fast response 

thermistors to measure the thermal diffusivity and vertical heat fluxes within the stratified 

part of the water column. Future designs will also include a variable depth instrument 

package that adjust to a specified depth within the IOBL (T. Stanton, 2016, personal 

communication).  

B. DATA PROCESSING 

Data processing steps of the AOFB 29 and ITP 80 timeseries are described in the 

following section. Both instrument systems were collocated on an intact ice floe in the 

Beaufort Sea and deployed from the Araon Ice Camp in 2014. All data processing took 

place on MATLAB version 2016a software. Calculations that required the use of ADCP 

data were limited to yeardays 246.5 of 2014 to 25 of 2015 due to backscatter conditions. 

Heat flux and heat content calculations were available from yeardays 246.5 of 2014 to 

120 of 2015. Vertical profiles of N2 were available during the entire life of the ITP 

(yeardays 226 of 2014 to 143 of 2015). 
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1. Potential Density Anomaly 

The Mixed Layer Depth (MLD) was calculated from ITP profiles of salinity, 

temperature, and pressure to produce potential density profiles. Similar to the methods of 

Timmermans et al. (2012), the MLD was defined via the .25 kg m-3 criteria (Figure 10). 

The potential density at -10 m depth was the first bin that was consistently available 

through all profiles from the ITP data. This -10 m bin acted as the reference bin in 

calculating bulk density difference. The reference bin was subtracted from each 

subsequent depth bin until the potential density difference equaled .25 kg m-3. ITP bins 

have one meter resolutions; as such, bulk density differences were linearly interpolated to 

allow greater resolution and precision in establishing the MLD. 

 
Colored plot of potential density from yeardays 246.5–320 with .25 kg m-3 MLD overlaid 
(black line). 

Figure 10.  Plot of Potential Density Anomaly and MLD Calculation. 

Figure 10 shows a profile timeseries of potential density anomaly calculated from 

the ITP with the .25 kg m-3 MLD overlaid as a black line. As the timeseries progresses 

towards winter, the MLD is found at greater depths. Variations in the depth of the 
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observed MLD can be affected by mesoscale eddies, turbulent mixing, and drift of the 

buoy over regional variability in the upper ocean.  

2. Brunt–Väisälä Frequency 

The Brunt–Väisälä frequency, also known as buoyancy frequency, or N, is an 

angular frequency that represents dynamic stability. It is the oscillation frequency a 

particle would have if displaced from rest. N2 is defined as: 

 

, 
 

where g is the gravitational constant (9.8 m s-2), rho is the potential density, and z is the 

depth. Where N2 is positive, the stratification is stable. Likewise, if N2 is negative, the 

stratification is unstable (Gill 1982). N2 profiles were calculated through depth from the 

3hr sampled ITP profiles. Low-pass filtering of N2 with a 10 hr cutoff was used to limit 

the effects of high frequency geophysical noise (Figure 11).  

 
Colored plot of N2 from yeardays 246.5–266. Black line represents the .25 kg m-3 MLD. 

Figure 11.  Buoyancy Frequency. 
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With N2 values and depths determined (Figure 11), vertical linear interpolation was used 

to find N2 at MLD depths. Along with N2, interpolation of shear values to the ITP time 

frame allows for Richardson number calculations. Just beneath -20 m, the N2 maximum 

associated with the upper pycnocline can clearly be seen. The less defined secondary 

stratification near -40 m represents the Pacific water. Intrusion of the Pacific water 

through the Bering Strait is incorporated into the Beaufort Gyre and subsequently the 

Canadian Basin.  

3. ADCP Bad Data Masking 

Masking is a technique used to negate data that is likely erroneous due to poor 

ADCP backscatter and correlation values. Backscatter profiles returned by the ADCP 

represent the acoustic backscatter strength in each range bin of the profiles. The closer, 

larger, and greater number of scatterers will give a larger backscatter value. ADCP 

correlation profiles are an estimate of the correlation levels found in each bin during the 

broadband Doppler frequency calculation. Correlation values will be high if different 

echoes from within the same pulse all have the same time lag. An example of high ADCP 

correlation would be multiple scatterers moving together at the same speed and direction 

(Gordon 1996). Neither backscatter or correlation are displayed with units due to 

normalizing within the ADCP (Figure 12).  

A running standard deviation in time was used as the ordinate in comparing 

backscatter and correlation. It is calculated at each individual ADCP sample time by 

utilizing the data 4 time intervals before, and 4 time intervals after, the current time sample 

for a total of 9 sample points. This 9-sample point window then slides along through time, 

calculating standard deviation along the way.  
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ADCP correlation and backscatter compared to the standard deviation of beam 1 velocity. 
Masked data required a backscatter value less than 85 and a correlation less than 45. 

Figure 12.  ADCP Backscatter and Beam Velocity. 

The standard deviation is then compared to the backscatter and correlation values. 

Noisy velocity data is seen in the rapid rise in standard deviation, for low backscatter or 

low correlation values (Figure 12). Velocity data with less than a normalized backscatter 

value of 85 and a normalized correlation value less than 45 was turned into Not a Number 

(NaN) in in each profile. Figure 13 shows the process of masking. 
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Process of masking for yeardays 246.5–266. Raw ADCP u component velocity data (top 
panel). Masked data with NaNs inserted in erroneous spots (middle panel). Depth bins—
59.9 m and less were interpolated through time and kept as usable data (bottom panel). 

Figure 13.  Masking of Current Velocity. 

A decision was made to interpolate through time and keep data at roughly -60 m 

and shallower. The closest ADCP depth bin to this chosen depth was -59.9 m and was 

subsequently chosen as the deepest bin used in this analysis. Figure 13, middle panel  

shows the effect of masking when backscatter and correlation values did not meet the 
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selected criteria. The bottom panel shows the effect of linearly interpolating the data 

shallower than -60 m and masking all data that was deeper. 

Calculations that involved vertical shear utilized a threshold depth of -58.9 m. 

Vertical differencing places shear depth bins in-between ADCP depth bins. This process 

of masking did not interfere with the MLD depth. At no time during the analyzed period 

did the MLD exceed -58.9 m. 

4. Vertical Shear 

ADCP measured current velocities are 30 min averaged, east-west (u) and north-

south (v) components, with depth intervals every 2 m. The first measured depth bin is -

8.64 m and ends at -88.64 m. Shear is calculated from these differences in measured 

velocities with each depth bin. The difference in vector amplitudes of each component 

are divided by the change in depth (2 m): 

 

 

Low pass filtering in time of the 30 min interval samples using a fourth-order 

Butterworth filter with a period cutoff of 2 hrs was used to limit the impact of high 

frequency variability. Figure 14 shows the shear profile timeseries as unfiltered, 2 hr 

filtered, and 2 hr filtered squared shear to show the reduction in both instrument and 

geophysical noise with filtering. Significant shear noise remained in the upper few bins, 

but these were not used in the following analyses. The black line in Figure 14 represents 

the MLD. It is apparent the insulating effect that is taking place between yeardays 248–

252 due to the strong stratification. Strong shear is encountered above the MLD during 

these days, but significantly reduced shear is seen below the MLD. Yeardays 262–266 

show shear that closely overlaps with the MLD, again reinforcing the insulating effect of 

the MLD’s strong stratification in preventing turbulent penetration and momentum 

transfer into the pycnocline. 
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Vertical shear for yeardays 246.5–266. Unfiltered vertical shear (top panel). Filtered 
vertical shear (middle panel). Filtered shear squared (bottom panel).  

Figure 14.  Vertical Shear. 

For Richardson number calculations, the squared version of shear is required. In 

order to evaluate shear across the MLD, a linear weighting function was used on the 

filtered squared shear profile timeseries:  
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, 

 

where dMLD-1 is the depth of the closest ADCP bin that is shallower than the interpolated 

MLD. Similarly, dMLD+1 is the depth of the closest ADCP bin that is deeper than the 

MLD. dMLD is the actual depth of the MLD. This weighting value is used in the second 

formula where sMLD-1 is the shear squared value in the closest bin that is shallower than 

the MLD, and sMLD+1 is the shear squared in the next deepest bin. shear 2
MLD is the 

derived squared shear at the actual MLD. The square root of shear 2
MLD will give us the 

total shear at the MLD. 

5. Gradient Richardson Number 

The dimensionless gradient Richardson number is a measure of whether dynamic 

turbulence will occur (Pond & Pickard, 1978). Empirically derived, it is the ratio between 

the shear squared and N2. A Richardson number less than .25 indicates a high likelihood 

of turbulence and subsequent heat and salt entrainment.  

. 

 

Large values of the Richardson number are often encountered in the ocean, so it is more 

convenient to use the inverse Richardson number. Inverse Richardson number values 

greater than 4 would indicate turbulent conditions.  

N2 values are calculated from ITP profiles sampled at a 3 hr sampling interval. 

Linear interpolation through depth using the MATLAB function interp1 allowed N2 

values to be obtained at the exact MLD depth for each vertical profile. However, values 

of shear 2
MLD were required to be interpolated through time and depth using the 

MATLAB function interp2. shear 2
MLD values were originally calculated at the ADCP 
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sample rate of 30 min and at every 2 m depth bins. The MATLAB function interp2 

allows retrieval of shear 2
MLD at the exact MLD for each 3 hr sampled ITP profile. With 

both shear 2MLD and N2 at the same time and depth, the inverse Richardson number can be 

calculated. 

6. Determination of Earth Relative Motion 

The AOFB contains an accurate Global Positioning System (GPS) with a sample 

period of 10 min. Earth relative buoy movement was calculated by differences in latitude 

and longitude, then converted from decimal degrees to meters per second. Local magnetic 

declination was determined using the MATLAB program igrfmagm and applied to the 

ADCP heading. After the declination correction, regardless of where the AOFB was in 

the Arctic, the coordinate system had North as toward the true North Pole, and East was 

always 90o to the right, along a line of latitude (Figure 15).  
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GPS u component velocity in red, compared to ADCP measured u component velocity at 
-31.2 m in black. Timeseries is for yeardays 246.5–266. The blue line between the two is 
the addition of ADCP velocity and GPS velocity, giving the actual Earth relative u 
component current velocity at -31.2 m depth (top panel). Earth relative u component 
velocity profile timeseries (middle panel). ADCP u component velocity profile timeseries 
(bottom panel). 

Figure 15.  Earth Relative Motion. 

ADCP data was interpolated from a 30 min period to the GPS 10 min period. 

Earth relative current velocity is calculated by adding the GPS velocity to the ADCP 

velocity, and the summation of the two produces the actual Earth relative current velocity 

for a particular velocity component (u or v). The ADCP reads current velocity relative to 

the ice motion; thus, in a situation with zero actual current, if the AOFB were to be 
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drifting 1 m/s to the East, the ADCP would read a current velocity of -1 m/s (West). 

Figure 15, top panel, shows the result of this calculation. The u component of GPS data 

(red line) is added to the corresponding u component of ADCP current velocity (black 

line). The blue line represents their summation and subsequently the Earth relative 

current motion at the chosen ADCP depth bin. Figure 15, middle panel shows a profile 

timeseries resulting from this calculation. The strong 12 hr period striping reveals inertial 

motion between yeardays 246–253, discussed further in section II.B.7. Figure 15, bottom 

panel shows the original ADCP referenced u component of velocity. Measurements of 

shear, N2, and Richardson number do not require Earth relative velocity components, as 

these calculations are based upon changes between consecutive depths. However, spectra 

and inertial calculations require Earth relative components for accurate measurements. 

7. Inertial and Non-inertial Component 

Inertial oscillations represent the resonant response to wind forcing with a period 

at, or just below, the Coriolis period. Internal waves propagating in the pycnocline at this 

frequency exhibit little vertical amplitude but have strong horizontal velocities. The 

inertial component of the ADCP velocity profile timeseries were determined through a 

process of complex demodulation and bandpass filtering. A power spectrum of the Earth 

relative u component was calculated using the cpsd MATLAB function for a 10 day 

section of the ADCP data (Figure 16). The number of points used to form each Fast 

Fourier Transform (FFT) was 512 (NFFT), with the number of overlapping samples set 

as NFFT/2; this offers a balanced tradeoff between time resolution and frequency 

resolution. Figure 16 shows a plot of the Power Spectral Density (PSD) for yeardays 

246.5–256 for three different depths. The black line represents the spectral energy in the 

middle of the mixed layer with the red line representing the spectral energy at the bottom 

of the mixed layer, or near the MLD. The shallowest depth of the MLD during the 10 day 

stretch was -20.1 m, with an average MLD of -25.5 m during the same timeframe. The 

blue line is the spectral energy at a depth bin always below the MLD.  
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Power Spectral Density (PSD) plot of u component Earth relative velocity. Three 
different depths are used for comparison. 

Figure 16.  Power Spectral Density 

Figure 16 shows nearly an order of magnitude drop in spectral energy when the 

power spectrum is performed at depth bins below the MLD. This demonstrates the impact 

the MLD stratification plays in blocking inertial motion coupling into the pycnocline.  

The inertial period calculation based upon initial latitude was 12.30 hrs, while the 

PSD plot shows an inertial peak at 12.150 hrs, within the frequency resolution of the 

spectrum. The period calculated via latitude was used over the PSD plot. Complex 

demodulation was used to extract the inertial components of velocity. It first involves 

high-pass filtering the individual Earth relative velocity components through time. A 

fourth-order Butterworth filter with a 20-hour period cutoff was used. A complex 

velocity is formed, then u component being multiplied by a cosine wave, and the complex 

v component multiplied by a complex sine wave. 
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, 

 

where f is the Coriolis frequency in Hertz, t is the time vector in seconds, u and v are 

Earth relative components of current, and Ui is the complex inertial vector. A fourth-

order Butterworth low-pass filter with an eight-hour period cutoff acts on the individual 

inertial components completes the demodulation process that extracts the baseband 

signal, or our inertial signal. Figure 17 shows the product of complex demodulation and 

highlights the strong inertial motion occurring between yeardays 246.5–254. The inertial 

speed is calculated by finding the vector magnitude of ui and vi. 

 
Inertial speed shown as a product of complex demodulation for yeardays 246.5 - 266. 
Note the strong inertial event at the beginning of the data set. 

Figure 17.  Inertial and Motion 

 With the inertial components, ui and vi, the inertial component of the gradient 

Richardson number was calculated. The same process of taking the vertical derivative 

and using the weighting function to interpolate shear at the mixed layer depth was used 

(section II.B.4).  

8. Heat Flux and Heat Content 

Vertical heat flux represents the rate of heat traversing a surface area per unit time 

with units of Wm-2.  
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, 

 

where HF represents vertical heat flux, rho is the density of seawater, and cp the specific 

heat capacity of seawater. w’ and T’ represent the fluctuating components of the vertical 

velocity and temperature, respectively. 

These turbulence timeseries measurements are made for 40 min and sampled at 2 

Hz from by the AOFB flux package. Due to power limitations in sampling and 

transmitting the full timeseries by Iridium, the 40 min samples are made every 2 hours. 

Figure 18 shows a 2000 second example of this calculation. 

 

Figure 18.  Heat Flux 

Figure 18, top panel, represents the turbulent fluctuations in vertical velocity. 

These fluctuations occur on the order of centimeters per second. The middle panel shows 

the turbulent fluctuation of temperature that are on the order of a thousands of a degree. 

When these two turbulent fluctuations are correlated together and ensemble averaged, 
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then multiplied by the density and specific heat capacity of sea water, the heat flux is 

obtained in W m-2. The bottom panel demonstrates the highly variable instantaneous 

correlations between w’ and T’, while the red line shows the ensemble average of the 

correlated turbulent fluctuations. This ensemble average is then multiplied by the specific 

heat capacity and density of seawater to obtain a heat flux of 7.4 W m-2 for the 2000 

second period. 

Pycnocline heat content is calculated by the integration of the difference in 

temperature between the MLD down to a specified depth, ze.  

, 

where ρ is the density of seawater and cp is the specific heat capacity of seawater. For this 

study, a 1 m range below the MLD was chosen as ze. This heat content gives a 

quantitative estimate of the amount of heat available for entrainment if the potential 

energy of the stratification over this 1 m depth can be overcome by turbulent, shear-

driven entrainment.  
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III. RESULTS 

A. DRIFT TRACKS AND TIME PERIODS 

AOFB 29 was deployed on 12 August 2014 at 77.431 N, 146.188 W during a 6 

day ice camp supported by the Araon ice breaker, and lasted until 05 October 2015 

(Figure 19 and 20). ITP 80 was deployed on 11 August  2014 at 77.5101 N, 146.2074 W 

from the same ice camp and remained operable until 22 May 2015. 

 
Drift track of ITP 80 and subsequently AOFB 29 which where collocated together in the 
Beaufort Sea. 

Figure 19.  ITP Track. Source: IMB 2014.  

The drift track of the collocated buoy pair began in the Northwestern Canadian 

Basin, just east of the Chukchi Plateau (Figure 19 and 20). In response to wind-driven ice 

drift, the buoy pair meandered east and eventually to the south, crossing the 75N parallel 

on yearday 343 of 2014. The ice floe then proceeded west towards the Northwind Ridge 

but was never able to reach the shallowing irregular bathymetry across the Northwind 

Ridge. The life cycle of the ice floe and corresponding buoys remained over the abyssal 

features that characterize the Canadian Basin.  
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Drift track of AOFB 29. The AOFB remained operable 135 days longer than the ITP. 

Figure 20.  AOFB track. Source: AOFB 2016. 

AOFB current profile data was unavailable during yeardays 228–245 of 2014 and 

yeardays 243–246 of 2015 due to ADCP setup errors that were remotely corrected. All 

other sensors were operating during the life cycle of the buoy. However, low acoustic 

backscatter conditions experienced from yeardays 25–125 of 2015 resulted in noisy 

current profiles making the data unreliable. The ITP’s last day in operation was yearday 

143 of 2015. Consequently, parts of this study that utilize ADCP data such as the 

Richardson number, vertical gradient of shear, and inertial motion are limited to yeardays 

246.5 of 2014 to 25 of 2015.  

B. CORRELATION STUDIES 

Calculations from ice speed, shear, Richardson number, and MLD amplitude were 

compared against each other to draw correlations and explore the relationships between 

the different physical processes. Pearson r values and type I error calculations utilized the 

MATLAB function corr when relationship comparisons were plotted. The test to reject 
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the null hypothesis required a type I error of less than 5% (p < .05). Yeardays over 365 

represent an entrance into the year 2015. 

1. Ice Speed and Shear 

Ice speed and shear across the base of the mixed layer were compared from 

yeardays 246.5–390 in Figure 21. It is hypothesized that increases in ice speed will 

translate into greater MLD shear, and winter time shear levels should be less than 

summer time levels due to greater ice concentration and lowered ice mobility. A time 

series of the two properties reveals the largest ice speeds in the beginning of the study 

period corresponding to strong fall synoptic systems transiting the site, and the resulting 

large inertial events that took place at the beginning of our dataset (Figure 21, top panel). 

Some instances of the coupling between ice speed and MLD shear can be seen between 

yeardays 255–256 where a large spike in ice speed on yearday 255 translates into a large 

spike in MLD shear on yearday 256. Another similar example is seen near yeardays 364–

365. However, not all instances of increased ice speed are correlated with enhanced MLD 

shear. Yearday 325 is an example of lower ice speed but average MLD shear. A further 

look into fall and winter shows no significant drop or increase in MLD shear or ice speed.  
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Timeseries of ice speed (top panel) and MLD shear (middle panel) for yeardays 246.5–
390. Blue dots in second panel represent raw shear, with 24 hr low pass filtered shear as 
the red line. 

Figure 21.  Ice Speed vs. MLD Shear 

Ice speed is expected to diminish with increasing ice concentration as the freedom 

of movement of the ice is decreased. With the reduction in ice speed, a reduction in MLD 

shear should be seen. The ice acts as a barrier to momentum transfer into the ocean. 

Surface generated turbulence is only generated when the ice is moving relative to the 

water. First year ice is often hydraulically smooth underneath; however, multi-year ice is 

often rough. This basal ice roughness can increase turbulence generation during ice 

movement and increase MLD shear. AOFB 29 was deployed on a fairly rough multi-year 

ice floe. Figure 22 shows the correlation between ice speed and MLD shear. 
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Figure 22.  Scatter Plot of Ice Speed vs. MLD Shear 

The correlation for raw MLD shear was r = .078 (p = .011). Using a 24 hr low 

pass filter on the MLD shear increased correlation and statistical significance slightly (r 

= .107, p < .001). Both raw and filtered shear levels averaged .0043 s-1. The correlations 

were much weaker than expected when considering the turbulent transfer of momentum 

from the ice sheet into the ocean mixed layer, bounded by the strong stratification at the 

MLD. 

2. Ice Speed and Richardson Number 

The inverse Richardson number was compared to the ice speed for yeardays 

246.5–390. It was hypothesized that an increase in ice speed should translate into greater 

dynamic instability through the increase in vertical shear (Figure 23).  
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Blue dots represent raw, unfiltered data. Red lines in panels 2–4 represent 24 low pass 
filtered data. Blue lines in the same panels represent the inertial component of the same 
parameters. Timeseries is for yeardays 246.5–390. 

Figure 23.  Comparison of Ice Speed, Richardson Number, Vertical Shear, and N2 

Around yearday 255 a spike in vertical shear results in a spike in inverse 

Richardson number (Figure 23, middle panel). Later in the timeseries, a small increase in 

N2 between yeardays 290–300 works to reduce the inverse Richardson number (Figure 23, 

panel d). The inertial component of the inverse Richardson number sees a short increase 

near yearday 252, which aligns with the onset of a period of strong inertial activity seen 

between 246 - 252. However, the increase in seen on yearday 252 is over by yearday 253. 



 41

It is surprising how low the inertial shear and inverse Richardson number seen early in the 

data set are during the strong inertial event seen during this period in Figure 17. Figure 15 

shows that substantial inertial energy was still present below the MLD. Lacking a strong 

vertical difference rather than a lack of inertial energy would create low inertial shear and 

inverse Richardson numbers. This suggests that the inertial energy from the mixed layer is 

rapidly coupling into the pycnocline, resulting in low vertical shear values.  

Linear regression analysis reveals a poor relationship between the ice speed and 

inverse Richardson number (Figure 24). The r value was .035 and -.05 for total and 

inertial correlations, respectively. 
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Figure 24.  Correlations of Ice Speed, Inverse Richardson Number, Shear, and N2 

A negative correlation for the inertial component is counterintuitive, as it would 

mean an increase in ice speed would create greater stability in the inertial spectra. 

However, this thinking is erroneous, as neither relationship was statistically significant (p 

> .05). The correlation between shear and inverse Richardson number was strong at r = 

.9 (p < .001) and weak between inverse Richardson number and N2 (r = -.24, p<.001), 

but still significant for the latter. This demonstrates the greater importance shear has in 

modulating the inverse Richardson number; albeit, it still lacks a statistically significant 

connection to ice speed. 
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3. Ice Speed and Heat Flux 

It is hypothesized that an increase in ice speed should translate into an increase in 

heat flux (Figure 25). An erosion of sub-pycnocline heat due to dynamic instability 

should warm the mixing layer and subsequently create an upward heat flux. 

 
Time series of ice speed, heat flux, and heat content for yeardays 246.5 - 485. Heat 
content was calculated over 1 m of depth below the MLD. 

Figure 25.  Time Series of Ice Speed, Heat Flux, and 
Heat Content 1 m below MLD. 
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The most apparent spike in heat flux occurs during the strong inertial activity at 

the beginning of the data set (Figure 25). The effects of heat flux due to the inertial event 

fully tapers off by yearday 280, which then heat flux remains mostly positive, between -1 

to 4 W m-2. Figure 25 shows that separating the strong inertial event from the rest of the 

data set reveals a statistically significant relationship between ice speed and heat flux (r = 

.569, p<.001). 

 

Figure 26.  Ice Speed vs. Heat Flux. 

Yeardays after 280 still reveal a statistically significant relationship, but a weaker 

correlation compared to the inertial event (r = .312, p<.001) (Figure 26). The inertial 

event is also when sub-pycnocline heat content is at its lowest, so clearly the dynamic 

forcing during the strong wind-driven entrainment event dominated the effects of 

variations in heat trapped just below the mixed layer depth (Figure 27).  
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Figure 27.  Heat Content vs. Heat Flux 

This is further confirmed in a comparison between heat content and heat flux 

(Figure 27) that reveals weak correlations for pre-yearday 280 (r=.07, p=.31) and post-

yearday 280 (r=.084, p<.001). Although the relationship post-yearday 280 is weak, the 

relationship is statistically significant. Analyzing the departure from freezing profile 

timeseries (Figure 28) shows a substantial separation on the order of 15 m between the 

MLD and warm Pacific water at the start of this interval. 
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Departure from freezing for yeardays 226 - 508. Black line represents the MLD. 

Figure 28.  Departure from Freezing 

Later in the timeseries, a deepening MLD is seen with an increase in available 

heat content within the first meter below the MLD. Focusing on near-surface thermal 

structure between yeardays 226–274 and a depth of -8 m to -50 m reveals significant heat 

content above our 0.25 Kg m-3 definition of MLD (Figure 29). Upper mixed layer heat 

0.15 C above freezing can be seen up to yearday 235 in Figure 28. This heat is trapped 

within the late summer, weak, near-surface stratification seen in Figure 30. This heat is 

being rapidly entrained during the coincident strong wind event, resulting in the high heat 

fluxes in Figure 25, middle panel, around yearday 250.  
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Departure from freezing for yeardays 226 - 275. Black line represents the MLD. Red box 
surrounding part of the colored plot is the same red box in Figure 28. 

Figure 29.  Small Scale Departure from Freezing 

The weak stratification seen up to yearday 238 in the upper 20 m of the water 

column is formed from strong ice melt during the late summer and represents the late 

summer Near Surface Temperature Maximum (NSTM) which is able to block turbulent 

mixing further into the water column (Gallaher 2016). During the strong wind driven ice 

motion spanning yearday 250, this weak seasonal pycnocline was fully entrained into the 

mixed layer and contributed significantly to basal ice melt.  
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Figure 30.  N2 Stratification profile timeseries for yeardays 225–275. 

Figure 30 shows this seasonal pycnocline with a main stratification peak on the 

order of 4 x 10–4 rad2 s-2 continuing until yearday 240. It is apparent that with each layer 

of stratification more heat becomes available for entrainment, yet the stratification 

becomes stronger, making the heat less available for entrainment and diffusion. After 

yearday 240, the seasonal pycnocline disappears and the .25 kg m-3 MLD becomes the 

first instance of strong stratification in a vertical profile. The low values of stratification 

of the upper seasonal pycnocline before yearday 240 still play an insulating role in 

protecting sub-pycnocline heat from entrainment in the mixed layer. 

4. Inverse Richardson Number vs. Heat Flux 

It can by hypothesized that an increase in inverse Richardson number should also 

be followed by an increase in heat flux due to erosion of the pycnocline and entrainment 

of warmer sub-pycnocline water (Figure 31).  
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Time series of Inverse Richardson number in panel 1 from yeardays 246.5 - 390. Panel 2 
correlates inverse Richardson number against heat flux. Red dots represent raw data, 
while blue dots represent both inverse Richardson number and heat flux with a 24 hr low 
pass filter. Third panel represents the much smaller contribution of inertial motion on the 
inverse Richardson number. 

Figure 31.  Inverse Richardson Number vs. Heat Flux 

Figure 31 shows that when correlating raw heat flux against raw inverse 

Richardson number, a weak but significant correlation was found (r = .19, p<.001). 

When both heat flux and inverse Richardson number were smoothed with a 24 hr low 

pass filter, a slightly better correlation was found (r = .3, p<.001). The inertial shear only 

inverse Richardson number saw the weakest correlation with r = .073 and type I error at 

p = .018.  
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IV. CONCLUSIONS 

A. SUMMARY 

There was a surprising lack of correlation between ice speed and MLD shear. The 

two physical mechanisms are naturally concomitant to one another. However, there is not 

always a one-to-one relationship. As the ice accelerates, it transfers momentum to the 

underlying ocean. This momentum transfer of the sea ice to the underlying ocean is 

greater with the presence of multi-year ice with rafting and ridging elements creating a 

hydro-dynamically rough surface. The time lags associated with acceleration of the fluid 

and formation of a sheared mixing layer that reaches the MLD reduces direct correlation 

with ice speed. The deeper the MLD, the greater the turbulent energy that is required to 

reach its depth and allow corresponding shear and entrainment. The MLD depth is 

dependent on seasonal variations and lateral gradients in the ocean as the buoy drifts over 

the relatively stationary ocean. On short time scales, mesoscale eddies can also affect 

MLD depths, which in turn would affect the magnitude of shear.  

Baroclinic instability and internal wave breaking can generate shear across the 

MLD that may not be predicated by ice speed. As Timmermans et al. (2012) 

demonstrated, measuring the effects of baroclinic instability and restratification requires 

spatial observations rather than single point measurements. A shallow stratification 

created through baroclinic instability can be can be eroded if turbulence is strong enough. 

However, it dampens energy that may reach the .25 kg m-3 MLD. Even weak shallow 

stratification just below the ice dampens turbulence and momentum transfer down 

through the water column. Figures 25, middle panel, and Figure 29 demonstrate that 

considerable heat is available for basal ice melt during powerful mixing and shallow 

entrainment events.  

The effect of defining the MLD can be a challenge when multiple layers of 

stratification are present, and one criteria for its definition may not fit all moments in the 

timeseries. Defining the MLD through a .01 kg m-3 bulk potential density difference 

would better characterize the seasonal pycnocline early in the data set compared to the 
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.25 kg m-3 criteria. However, in between mixing events and lateral restratification the .01 

kg m-3 results in erratic depths. This results in erratic values for shear, inverse Richardson 

number, and heat content below the .01 kg m-3 MLD. The .25 kg m-3 criteria worked well 

during the majority of the available time series.  

Measurements of shear are highly dependent upon ADCP performance, noise, and 

available scatterers in the water column. The data was ameliorated by limiting processing 

to high backscatter days, interpolating across low acoustic Doppler correlation data, and 

using low pass filtering. Correlations between ice speed and inverse Richardson number 

were not statistically significant; however, due to the low variation in stratification of the 

MLD, the inverse Richardson number was largely modulated by the available shear. A 

low correlation of MLD shear would also give a predilection towards a lower correlated 

inverse Richardson number. 

The relationship between ice speed and heat flux had the highest correlation 

values. The strong inertial event and resulting heat flux event was processed separately 

from the rest of the data to study the role of inertial energy in the system. In both the 

inertial event and post inertial event cases, ice speed and heat flux were moderately 

correlated with each other, and statistically significant. This is as expected within the 

theoretical framework of dynamic instability. This illustrates that strong inertial events 

can potentially capture large amounts of heat that become immediately available for basal 

ice melt. Inertial events are dampened when internal ice stresses are high (McPhee 2008). 

It can be theorized that continuing lower concentrations of sea ice nominally seen during 

the late summer acted to magnify inertial motions and corresponding vertical heat flux. 

However, the main reason for the initial high heat fluxes were revealed in the high 

resolution view of the ocean mixed layer temperature and stratification. This shallow, 

weakly stratified heat was readily mixed out during the strong wind and ice motion event.  

The amount of vertical heat flux may not be directly associated with the sub-

pycnocline heat content in the 1 m below MLD as the comparisons show. Although the 

correlation between heat content and heat flux was statistically significant, the 

correlations were weak (r < .1). This somewhat arbitrary measure of heat content showed 

very little variation during this 238 day sample of the Canadian Basin. Analysis of the 
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temperature structure immediately below the MLD showed warmer water, and enhanced 

stratification, but not at the level of heat content contained within the Pacific layer 

(Figure 29). Consequently, the pycnocline diffusivity is likely to be strongly limiting heat 

flux up to the MLD where the heat becomes available for entrainment.  

The inverse Richardson number was at its highest correlation with the heat flux 

when the data was smoothed with a 24 hr low pass filter. The inverse Richardson number 

was highly modulated by the MLD shear rather than N2 during this time series. With a 

correlation of r = .3, it was below what was expected. However, measuring the MLD 

shear is dependent upon the criteria for defining the MLD and what bulk density 

difference was used. Correlating the inverse Richardson number with the heat flux also 

assumes that no NSTM is present in the timeseries. Although a NSTM was present early 

in our timeseries, it was gone before inverse Richardson number calculations began. The 

strength of the MLD stratification may have lowered correlation between inverse 

Richardson number and heat flux since stronger stratification allows greater fluctuations 

in shear before dynamic instability takes place, and subsequent heat flux rises above 

molecule diffusivity levels. 

B. FURTHER STUDIES 

An area of interest for future research would be a better estimate of heat flux to 

heat content, and the ability to determine the exact depth of entrainment that took place. 

With an exact depth of entrainment, the true heat content available to the mixed layer can 

be calculated. Another interesting area of interest is in the correlation between ice speed 

and heat flux. Although the correlations in this study were moderately low (.3 < r < .5), 

the inclusion of more AOFB and ITP buoys could help to sharpen this relationship. From 

a remote sensing aspect, the ability to have a prediction of heat flux values simply based 

on ice speed is a powerful consideration in the way forward, but will be limited by 

regional variations in upper pycnocline heat content. This study was fortunate to work in 

the Canadian Basin, as regions with irregular bathymetry may prove to be more 

challenging in this regard. Regions with high internal wave breaking and tidal 
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interactions along with upwelling zones may add more variables to an already 

complicated effort. 

This thesis demonstrates that the Arctic is a complex and dynamical system with 

physical relationships that are clearly multi-variate and interconnected. The Arctic is also 

a delicate ecosystem and its future is uncertain at the current level of global warming and 

sea ice decline. There is still much to learn about this cold, harsh environment, and it is of 

hope that this thesis contributes to that knowledge. 
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